skip to main content


Search for: All records

Creators/Authors contains: "Kanj, Iyad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Image data plays a pivotal role in the current data-driven era, particularly in applications such as computer vision, object recognition, and facial identification. Google Maps ® stands out as a widely used platform that heavily relies on street view images. To fulfill the pressing need for an effective and distributed mechanism for image data collection, we present a framework that utilizes smart contract technology and open-source robots to gather street-view image sequences. The proposed framework also includes a protocol for maintaining these sequences using a private blockchain capable of retaining different versions of street views while ensuring the integrity of collected data. With this framework, Google Maps ® data can be securely collected, stored, and published on a private blockchain. By conducting tests with actual robots, we demonstrate the feasibility of the framework and its capability to seamlessly upload privately maintained blockchain image sequences to Google Maps ® using the Google Street View ® Publish API. 
    more » « less
    Free, publicly-accessible full text available May 19, 2024
  2. Legged locomotion is a highly promising but under–researched subfield within the field of soft robotics. The compliant limbs of soft-limbed robots offer numerous benefits, including the ability to regulate impacts, tolerate falls, and navigate through tight spaces. These robots have the potential to be used for various applications, such as search and rescue, inspection, surveillance, and more. The state-of-the-art still faces many challenges, including limited degrees of freedom, a lack of diversity in gait trajectories, insufficient limb dexterity, and limited payload capabilities. To address these challenges, we develop a modular soft-limbed robot that can mimic the locomotion of pinnipeds. By using a modular design approach, we aim to create a robot that has improved degrees of freedom, gait trajectory diversity, limb dexterity, and payload capabilities. We derive a complete floating-base kinematic model of the proposed robot and use it to generate and experimentally validate a variety of locomotion gaits. Results show that the proposed robot is capable of replicating these gaits effectively. We compare the locomotion trajectories under different gait parameters against our modeling results to demonstrate the validity of our proposed gait models. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  3. “Data is the new oil” has become a popular catch-phrase in the world of technology, emphasizing the immense value of data in today's digital age. Most services and platforms rely on data, but collecting this data can be challenging and costly. To address this issue, we leverage a novel distributed crowdsourcing framework - termed Swarm Contracts - that utilizes blockchain and is applied to robotics technologies. The framework encourages an incentivized crowdsourcing model through open-source robots and a secure, decentralized, and transparent blockchain-based incentive system. As a demonstration of the framework's capabilities, we use it to collect Google Street View ® map data, which can be a resource-intensive task to keep up to date using traditional centralized methods. Our Swarm Contract framework uses Google Street View ® Publish API, which allows for the contribution of street view data to Google Maps @to implement the incentive-based crowdsourcing of street view images. By incorporating a swarm contract-powered framework with the Google Street View ® Publish API, we show that the incentivized crowdsourcing of street view data can be a practical solution to maintain accurate and up-to-date Google Street View ® maps. 
    more » « less
  4. Soft robotic snakes (SRSs) have a unique combination of continuous and compliant properties that allow them to imitate the complex movements of biological snakes. Despite the previous attempts to develop SRSs, many have been limited to planar movements or use wheels to achieve locomotion, which restricts their ability to imitate the full range of biological snake movements. We propose a new design for the SRSs that is wheelless and powered by pneumatics, relying solely on spatial bending to achieve its movements. We derive a kinematic model of the proposed SRS and utilize it to achieve two snake locomotion trajectories, namely side winding and helical rolling. These movements are experimentally evaluated under different gait parameters on our SRS prototype. The results demonstrate that the SRS can successfully mimic the proposed spatial locomotion trajectories. This is a significant improvement over the previous designs, which were either limited to planar movements or relied on wheels for locomotion. The ability of the SRS to effectively mimic the complex movements of biological snakes opens up new possibilities for its use in various applications. 
    more » « less
  5. Soft robotic snakes made of compliant materials can continuously deform their bodies and, therefore, mimic the biological snakes' flexible and agile locomotion gaits better than their rigid-bodied counterparts. Without wheel support, to date, soft robotic snakes are limited to emulating planar locomotion gaits, which are derived via kinematic modeling and tested on robotic prototypes. Given that the snake locomotion results from the reaction forces due to the distributed contact between their skin and the ground, it is essential to investigate the locomotion gaits through efficient dynamic models capable of accommodating distributed contact forces. We present a complete spatial dynamic model that utilizes a floating-base kinematic model with distributed contact dynamics for a pneumatically powered soft robotic snake. We numerically evaluate the feasibility of the planar and spatial rolling gaits utilizing the proposed model and experimentally validate the corresponding locomotion gait trajectories on a soft robotic snake prototype. We qualitatively and quantitatively compare the numerical and experimental results which confirm the validity of the proposed dynamic model. 
    more » « less
  6. Soft robotics holds tremendous potential for various applications, especially in unstructured environments such as search and rescue operations. However, the lack of autonomy and teleoperability, limited capabilities, absence of gait diversity and real-time control, and onboard sensors to sense the surroundings are some of the common issues with soft-limbed robots. To overcome these limitations, we propose a spatially symmetric, topologically-stable, soft-limbed tetrahedral robot that can perform multiple locomotion gaits. We introduce a kinematic model, derive locomotion trajectories for different gaits, and design a teleoperation mechanism to enable real-time human-robot collaboration. We use the kinematic model to map teleoperation inputs and ensure smooth transitions between gaits. Additionally, we leverage the passive compliance and natural stability of the robot for toppling and obstacle navigation. Through experimental tests, we demonstrate the robot's ability to tackle various locomotion challenges, adapt to different situations, and navigate obstructed environments via teleoperation. 
    more » « less
  7. Continuum arms, with their mix of compliance, payload, safety, and manipulability, are perfectly suited to serve as co-robots, and their applications range from industry and manufacturing to human healthcare. Their hyper-redundancy serves as their most significant challenge for path planning and path planning approaches commonly used with rigid-link robots, such as inverse kinematics, that fail to provide reliable trajectories for continuum arms. We propose an Inverse Kinematics-based approach to address the limitations of previously-proposed Kinematics-based approaches. Using this new approach, we are able to efficiently generate very rich sets of configurations, which, in turn, lead to smooth path planning for such continuum manipulators. To validate the smoothness of the paths generated by our approach, we apply dynamics constraints to the generated trajectories. We show that, when tracked by a controller, the paths that are generated using the proposed approach are much smoother than previously-proposed Kinematics-based approaches: The proposed approach allows the continuum arm to traverse the trajectories very accurately and in time less than half of that taken by previous (reliable) path planning approaches. 
    more » « less